CCNA图文-23-帧中继实例详解

  • A+
所属分类:网络运维
摘要

本文介绍一下帧中继相关知识,包括帧中继的术语、帧中继运行方式、帧中继本地管理接口、帧中继全局寻址、基于物理接口的帧中继和基于子接口的帧中继等。文章的后半部分会使用几个实例来演示前面介绍的理论。

文章目录

1.帧中继概述

Frame Relay,简称FR,可以将它看做X.25协议的简化版本,帧中继网络中不考虑传输差错问题,其中的结点只做帧的转发操作,不需要执行接收确认和请求重发等操作;帧中继是一种严格意义上的二层协议。

在帧中继网络中使用VC(Virtual Circuit,虚电路)来互连各个分支,并不需要两个分支之间有单独的物理链路。下面是物理专线和帧中继虚电路的示意图:

CCNA图文-23-帧中继实例详解

使用虚电路的最主要好处就是配置方便,建立和拆除虚电路只需要使用命令配置即可,所以虚电路并非真正的物理链路,只是在现有网络的基础上添加的一系列转发规则,就好像在源和目的间存在一条专线一样;相比之下专线则需要综合布线施工,建立和拆除难度较大。

帧中继的工作范围在DTE设备和帧中继交换机之间。

a.帧中继术语

1)VC(Virtual Circuit,虚电路)

帧中继网络中两台DTE设备之间的连接称为虚电路,现在常用的虚电路为PVC(Permanent Virtual Circuit,永久虚电路),PVC由运营商预先配置。

2)DLCI(Data Link Connection Identifier,数据链路连接标识符)

CCNA图文-23-帧中继实例详解

DLCI是源设备和目的设备之间标识逻辑电路的一个数据值,该数据值只具有本地意义。在图二中,R1上的DLCI号103标识的是R1到R3的连接,R1上的DLCI号104标识的是R1到R4的连接。不同DTE设备上的DLCI号可以相同,但在同一台DTE设备上不能用相同的DLCI号来标识到不同的连接。

DLCI号的范围是0-1023,其中0-15以及1008-1023被保留用作特殊用途,所以用户可以配置的DLCI号为16-1007。

3)LMI(Local Management Interface,本地管理接口)

LMI是用户端和帧中继交换机之间的信令标准,负责管理设备之间的连接,维护设备的状态。LMI被用来获知路由器被分配了哪些DLCI,确定PVC的操作状态,有哪些可用的PVC,另外还用来发送维持分组,确保PVC处于激活状态。
LMI的类型有三种:ANSI、Cisco、Q933A,DTE端的LMI配置要和帧中继上的一致,否则LMI不能正常工作,进而导致PVC失败。思科路由上默认的LMI类型为Cisco。

除了上面三个比较常见外,还有下面这些术语,有兴趣的朋友可以自己去查一下每个术语的解释:

承诺信息速率(CIR)
承诺突发(BC)
超量突发(BE)
前向显示拥塞通知(FECN)
后向显示拥塞通知(BECN)
允许丢弃(DE)

b.帧中继运行方式

这一部分结合下面的图三来介绍帧中继是如何工作的,数据包是如何被转发的。

CCNA图文-23-帧中继实例详解

1)帧中继帧格式

帧中继的帧和以太网帧一样,也工作在数据链路层,帧的格式如下图:

CCNA图文-23-帧中继实例详解

帧中继帧的各字段解释如下:

Flag标志:标志帧的开始和结束
地址:地址字段2个字节中包含了DLCI号(帧中继的帧中只有一个DLCI号,即去往的目的地的DLCI号,2个字节中的10个比特用来储存这个DLCI号);拥塞控制(Congestion Control)占3比特,其中包括1比特的FECN位,1比特的BECN位和1比特的DE位;除此之外地址域中还包含3个比特的其他值。
数据:是一个可变长的字段,包含了封装的上层协议数据。
帧效验序列:用来保证传输数据的完整性。

2)帧中继中的帧转发方式

在图三中,假设R1要将数据发往R3,R1封装DLCI号103(至于为什么R1知道发往R3要封装103这个在下面的帧中继寻址方式中会详细的介绍),将封装好的帧发往帧中继交换机FR1。根据FR1上管理员的配置,FR1知道如果从接口1接收到DLCI号为103的帧,应该将DLCI号修改成112并从接口3发出。此时帧到达FR3,FR3也根据配置得知,从自己的1接口接收到的DLCI号为112的帧,应该将DLCI号修改成301,并从3号接口发出。此时R3接收到FR3发过来的帧中继帧,解封装后交给上层处理。

从上面的工作方式中可以看出,只要R1封装DLCI号103的帧,就能将数据发往R3,帧中继网云使用DLCI号103和DLCI号301在R1和R3之间建立了一条永久虚电路(PVC),同理R1到R4可以封装104,R4到R1可以封装401。

3)帧中继交换表

在图三的帧中继网络中,FR1-3三台帧中继交换机上都维护着一个帧中继交换表,下面是FR1的帧中继交换表的样式:

CCNA图文-23-帧中继实例详解

c.帧中继寻址方式

这一部分将介绍"反向ARP(Inverse ARP)",帧中继中的反向ARP是根据DLCI号解析IP的一个过程,和以太网中通过ARP解析MAC地址很相似。下图描述了这一过程是如何进行的:

CCNA图文-23-帧中继实例详解

以上图(图6)R1和R3之间的通信为例,假设R1和帧中继交换机相连的物理接口IP是123.1.1.1,R3和帧中继交换机相连的物理接口IP是123.1.1.3,首先第一步在R1和R3的物理接口上配置帧中继封装(图中第1步),接口开启后,R1和R3会自动向帧中继交换机发送查询信息,该消息可以向帧中继交换机通知本路由状态,还可以查询有哪些可用的DLCI号(图中第2步)。

帧中继交换机通知R1,DLCI号103和104是激活的(图中第3步),可以使用。对于每个激活的DLCI号,R1发送一个反向ARP请求分组,宣告自己的IP,并且封装对应的DLCI号(图中第4步)。

从这一点可以看出,帧中继是不支持广播的,帧中继网络默认是NBMA(Non-Broadcast Multiple Access,非广播多路访问),但可以通过发送多个帧拷贝来解决广播问题。

帧中继网云将R1发来的DLCI号103替换成301发往R3(图中第5步,实际帧中继网络中可能存在很多帧中继交换机,这里假设中间只有一台,便于讲解)。

R3收到帧中继交换机发来的帧,DLCI号是301,R3处理该数据帧并进行应答,R3封装DLCI号为301,并且告知自己的IP是123.1.1.3(图片中第6步),然后从自己的物理接口发回。

帧中继交换机收到这个DLCI号是301的帧,根据自己的交换表,将DLCI号改成103发往R1,R1收到这个应答后在本地的映射中添加R3的IP123.1.1.3和对应的DLCI号103,以后发往123.1.1.3的数据帧就用DLCI号103封装。

最后图中第7步,R1继续发送维持消息,默认10秒一次,此维持消息可以验证帧中继交换机是否处于激活状态。反向ARP默认的发送时间是60秒。

同理R3和R4也可以使用相同的方法获得对方的IP地址和对应的DLCI号。

d.帧中继水平分隔潜在问题

有时候不需要建立全互连型帧中继网络,比如下面这中情况:

CCNA图文-23-帧中继实例详解

在这种星型拓扑结构中R1和R2以及R3通过虚电路相连,R2和R3之间没有建立虚电路,R1就像以太网中的一个Hub,R2或R3将路由信息发给R1,因为水平分隔的原因,R1不会将从一个接口接收到的路由信息再从这个接口发回,导致R1上面有所有分支的路由信息,而分支路由间无法学习到路由信息。

解决这一问题的方法是关闭水平分隔,或者使用多个点到点子接口,在后面的配置实例中会详细介绍到。

2.帧中继配置实例

a.配置帧中继路由器

帧中继的所有实验都在GNS3中完成,配置下面这张拓扑图,图中四台路由器均为c3640,将R2配置成帧中继交换机,用来模拟帧中继网云,R1、R3、R4是DTE端的路由器配置帧中继封装:

CCNA图文-23-帧中继实例详解

首先配置R2成为帧中继交换机。

R2配置:

帧中继交换机配置完成后继续下面的配置,配置帧中继网络中其他路由器(R1、R3、R4)。

b.配置其他路由器使用帧中继网络

R1配置:

R3配置:

R4配置:

配置完成后测试R1、R3、R4都能互相ping通,使用下面的命令可以查看帧中继DLCI号的映射情况:

通过下面的命令查看PVC建立和DLCI号的分配情况:

通过下面的命令查看R1接口的LMI类型:

在上面的配置中可能出现下面的问题:

如果使用"show frame-relay pvc"查看路由器上面学不到DLCI号,请检查物理接口是否打开(包括帧中继交换机上的物理接口),本地和帧中继交换机相连的接口的封装协议是否被配置成了帧中继,本地接口的LMI类型是否和帧中继交换机的一致。

可以通过查看接口信息来验证:

现在R1、R3、R4都能互相ping通对方,但是还存在一个问题,他们ping不通自己的IP,从上面的"show frame-relay map"也可以看出,R1的帧中继映射中没有自己的"123.1.1.1"的映射,它不知道发往这个IP需要封装什么DLCI号,下面继续配置,让他们都能ping通自己。

c.配置帧中继能够ping通自己

为了它们能够ping通自己的IP,需要使用静态映射命令:

R1、R3、R4添加能ping通自己的静态映射;

R1配置:

R3配置:

R4配置:

这样R1、R3、R4就能够ping通自己的IP了:

到这里为止,帧中继网络中的三台路由器都使用了反向ARP从帧中继交换机上获取到DLCI和对应的IP地址,下面一部分将介绍如何关闭反向ARP,使用全手动静态配置来配置帧中继映射。

d.配置帧中继使用静态映射

这一部分手动配置DLCI的静态映射,首先关闭反向ARP,然后清除通过反向ARP学习到的动态映射缓存,然后使用手动配置。

R1配置:

R3配置:

R4配置:

配置完成后在R1上查看帧中继映射表:

e.RIP over 帧中继

帧中继作为二层链路,上面可以运行各种动态路由协议。在GNS3中完成下图配置,在帧中继网络中运行RIP协议。

CCNA图文-23-帧中继实例详解

R2被配置成帧中继交换机,其中只有两条虚电路R1-R3和R1-R4,R1 s0/0的IP为123.1.1.1,R3 s0/1的IP为123.1.1.3,R4 s0/2的IP为123.1.1.4,它们上面各有一个回环接口,这些接口都被发布到RIP协议中。

首先将R2配置成帧中继交换机:

R1配置:

R3配置:

R4配置:

配置完成后全网后能互相通信,在R4上查看路由表和帧中继映射表:

从上面的输出中并没有出现上面"帧中继水平分隔潜在问题"中提到的水平分隔问题,这是因为帧中继物理接口默认关闭了水平分隔,在R1上查看接口信息:

可以使用下面的命令打开水平分隔:

打开水平分隔后稍等一段时间,RIP收敛后,R3上面就看不到R4回环接口的路由了,同样R4上面也看不到R3的回环接口路由了。

除了关闭水平分隔外,还可以使用接下来介绍的方法,使用点到点子接口来解决水平分隔在帧中继网络中导致的问题。

f.配置帧中继子接口

这一部分来配置一个稍微复杂一点的拓扑,在这个拓扑中会综合运用到两种子接口:点到点子接口(Point-to-Point)、多点子接口(Multipoint)。

CCNA图文-23-帧中继实例详解

如上图所示,R5被配置成帧中继交换机,其中有三条虚电路R1-R2,R1-R3,R1-R4,在R1的s0/0接口上启用了子接口,其中s0/0.1用来连接R2,是一个点到点子接口,s0/0.2被用来连接R3和R4,是一个多点子接口。R1 s0/0.1的IP为12.1.1.1、s0/0.2的IP地址为134.1.1.1,R2的s0/1的IP地址为12.1.1.2,R3的s0/2的IP地址为134.1.1.3,R4的s0/3的IP地址为134.1.1.4。每个路由上都有一个回环接口,IP如图所示。在这个帧中继网络上运行RIP协议,测试多点子接口存在的水平分隔问题。

首先配置R5成为帧中继交换机:

在R1上配置点到点和多点子接口:

R2配置:

R3配置:

R4配置:

可以在R1上查看子接口信息来验证默认情况下,点到点子接口和多点子接口的水平分隔都是打开的:

在R2的多点子接口上连接了两台路由器R3和R4,查看R3的路由表:

同样,在R4上面也看不到R3回环接口的信息,这就是因为R1上s0/0.2接口上默认的水平分隔设置导致的,用下面的命令关闭R1的s0/0.2子接口的水平分隔:

再次查看R3的路由表:

这一部分演示了路由器子接口配置(点到点子接口和多点子接口)以及多点子接口上面需要注意的水平分隔问题。

3.EIGRP over 帧中继

这一部分使用的拓扑图如下:

CCNA图文-23-帧中继实例详解

R4是帧中继交换机,图中配置了两条虚电路R1-R2,R1-R3,R1-3各有一个回环接口IP如图所示。

首先配置R4成为帧中继交换机:

a.在帧中继物理接口上运行EIGRP

配置R1、R2、R3的物理接口使用帧中继封装,并且在上面运行EIGRP协议。

R1配置:

R2配置:

R3配置:

配置完成后在R2上面查看路由表:

在这里发现了问题,R2上面并没有学到去往R3的回环接口3.3.3.3的路由条目,同样R3上面也没有学习到R2的回环接口的条目,这是因为在R1的物理接口s0/0上开启了对EIGEP的水平分隔,通过下面的命令来关闭它:

关闭之后再次查看R2的路由表,就可以学习到去往R3回环接口的路由条目了。

b.在帧中继子接口上运行EIGRP

R2、R3、R4配置保持不变,直接右击R1选择"stop",然后再次右击R1选择"Start"重启这台路由器,由于没有保存配置,R1将恢复初始状态,现在要在它的物理接口s0/0上配置多点子接口:

c.在帧中继点到点接口上运行EIGRP

R4帧中继交换机的配置保持不变,直接右击R1、R2、R3选择"stop",然后再次右击选择"Start"重启这几台路由器,将他们恢复初始状态, 现在要在R1的物理接口s0/0上配置点到点子接口,由于多点子接口下所有对应的路由属于同一网段,而点到点子接口,每个子接口对应了一个单独网段,每个子接口就像一个单独的物理接口一样工作,所以不会出现水平分隔的问题:

R1配置:

R2配置:

R3配置:

点到点子接口可以有效的避免水平分割带来的问题,但点到点子接口会占用更多的IP地址。

  • 我的微信
  • 这是我的微信扫一扫
  • weinxin
  • 我的微信公众号
  • 我的微信公众号扫一扫
  • weinxin
avatar

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: